A Riemann–Hilbert problem for the finite-genus solutions of the KdV equation and its numerical solution
نویسندگان
چکیده
We derive a Riemann–Hilbert problem satisfied by the Baker-Akhiezer function for the finite-gap solutions of the Korteweg-de Vries (KdV) equation. As usual for Riemann-Hilbert problems associated with solutions of integrable equations, this formulation has the benefit that the space and time dependence appears in an explicit, linear and computable way. We make use of recent advances in the numerical solution of Riemann–Hilbert problems to produce an efficient and uniformly accurate numerical method for computing all periodic and quasi-periodic finite-genus solutions of the KdV equation.
منابع مشابه
Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملNumerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann-Hilbert problems
In this letter we describe how to compute the finite-genus solutions of the Korteweg-de Vries equation using a Riemann-Hilbert problem that is satisfied by the Baker-Akhiezer function corresponding to a Schrödinger operator with finite-gap spectrum. The recovery of the corresponding finite-genus solution is performed using the asymptotics of the Baker–Akhiezer function. This method has the bene...
متن کاملNumerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations
Recent advances in the numerical solution of Riemann–Hilbert problems allow for the implementation of a Cauchy initial value problem solver for the Korteweg–de Vries equation (KdV) and the defocusing modified Korteweg–de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accur...
متن کاملRiemann-Hilbert problem for the small dispersion limit of the KdV equation and linear overdetermined systems of Euler-Poisson-Darboux type
We study the Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion and with monotonically increasing initial data using the Riemann-Hilbert (RH) approach. The solution of the Cauchy problem, in the zero dispersion limit, is obtained using the steepest descent method for oscillatory Riemann-Hilbert problems. The asymptotic solution is completely described by a scalar func...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کامل